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1. Introduction 

CARE III (Computer-Aided Reliability Estimation, version - - - 
three) is a computer program designed to help estimate the re- 

liability of complex, redundant systems. Although the program 

can model a wide variety of redundant structures, it was developed 

specifically for fault-tolerant avionics systems - systems dis- 

tinguished by the need for extremely reliable performance since a 

system failure could well result in the loss of human life. 

It is usually relatively easy to design enough redundancy 

into a system to reduce to acceptably small levels the probability 

that it fails due to inadequate resources. The dominant cause of 

failure in ultra-reliable systems thus tends to be due not to the 

exhaustion of resources but rather to the failure to detect and 

isolate a malfunctioning element before it has caused the system 

to take an erroneous action. Such failures are called coverage 

failures. CARE III differs from its predecessors in, among other 

things, the attention given to coverage failure mechanisms. 

The first CARE program, developed at the Jet Propulsion 

Laboratory in 1971, provided an aid for estimating the reliability 

of systems consisting of a combination of any of several standard 

configurations (e.g. standby-replacement configurations, triple- 

modular redundant configurations, etc.). CARE II was subsequently 

developed by Raytheon, under contract to the NASA Langley Research 

Center, in 1974. It substantially generalized the class of redun- 

dant configurations that could be accommodated, and included a 

coverage model to determine the various coverage probabilities as 

a function of the applicable fault recovery mechanisms (detection 

delay, diagnostic scheduling interval, -isolation and recovery 

delay, etc.). 
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CARE III further generalizes the class of system structures 

that can be modeled and greatly expands the coverage model to 

take into account such effects as intermittent and transient 

faults, latent faults, error propagation, etc. In order to ac- 

complish this, it was necessary to depart substantially from the 

approaches taken in previous reliability modeling efforts. The 

nature of, and the reasons for, this departure are explained in 

the following section. 
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2. Background 

Reliability models tend to fall into one of two classes: 

combinatorial or Markov. Combinatorial models attempt to cate- 

gorize the set of operational states (or, conversely, the number 

of non-operational states) of the system.in terms of the function- 

al states of its components in such a way that the probabilities 

of each of these states can be determined by combinatorial means. 

Markov models concentrate on the rate at which transitions take 

place between different system states and then use this informa- 

tion to determine the probabilities that the system is in each of 

these states at any given time. These two approaches, and the CARE 

III departure, are best illustrated by an example. 

Consider a simple, redundant structure consisting of four 

identical elements, the (binary) outputs of which are passed 

through a majority voter. If the outputs of at least three of 

these units are correct, the voter output is likewise correct. 

Further, if any one unit is determined to be faulty, its outputs 

are subsequently ignored by the voter, so that a second failure 

can also be tolerated without producing an incorrect output. 

First, assume the voter is perfect both in its ability to produce 

an output determined by the majority of its inputs and in its 

ability to identify and to ignore without further delay the out- 

puts of the first faulty element. 

The combinatorial method for assessing the reliability of 

such a structure is entirely straightforward: the probability 

that the output is correct is simply the probability that at most 

two of the four elements have failed. If any single element has 

a probability P(t) of surviving until time t, the probability R(t) 

that the voter outputs are still correct at time t is therefore 
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2 
R(t) = c 0 4 *[P(t)]4-i[l-P(t)]i 

i=O 
(1) 

= 6P2(t) - 8P3(t) + 3P4(t) 

The Markov model of the structure in question is equally 

straightforward. In general, a structure can be represented by 

a Markov model if it is possible to characterize it in terms of 

states (the various states defined, for example, by the number of 

component failures and other relevant parameters) and transition 

rates between states, with the proviso that the transition rate 

rij(t) between state Si and state Sj is, for all i and j, a func- 

tion only of i and j and, possibly, the time t measured from the 

entry into some known initial state (cf. Figure 1). Thus, if the 

system is known to be in state Si at time T, the probability Si(t) 

that it has not left that state by time t > T is given by the solu- - 
tion to the differential equation 

-Si'(t) = C r 
j 

ij(t)si(t) t >'I - 

with the initial condition Si(~) = 1. 

If the transition rates r ij (t) are all independent 

Markov model is said to be (time) homogeneous. In this 

differential equation is readily solved, yielding 

of t, the 

case, the 

Si(t) = e -A (t-T) t >T - 

with X = c r... 
j '3 

The holding time in each state, in this case, is 

exponentially distributed. 

Consequently, if in the structure of concern here, the proba- 

bility P(t) that any single element survives until time t is ex- 

ponentially distributed (P(t) = e -At) , and if state Si refers to 
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From Other States 

To Other States 

Figure 1 

General Structure of a Markov Model 
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the state of the system characterized by i component failures, 

then the distribution of the holding time in state i is just 

e -(4-i)Xt 
I with 4 the number of initially operational elements 

and h the hazard rate of each element. The transition rate r ij (t) 

is then simply 

rij(t) = 
‘i’ (t) = (4-i)X 
'i (t) i 0 

j = i+l 
j # i+l 

and the Markov model is as shown in Figure 2. The three states, 

Figure 2 - 

Markov Model of a 2-Out-of-4 Structure 

labeled 0, 1, and 2, correspond to the number of failed elements: 

the state labeled F denotes the failed state (more than two failed 

elements) . 

The reliability of the structure is also easy to determine 

from its Markov model: Let PO(t) be the probability that the sys- 

tem is in state i at time t. Then 

P/(t) = -4AP@) 

PlW = 4XPOW - 3XPll-t) 

P2'W = 3XPlW - 2XP2(t) 

P,'(t) = 2XP2(t) 

(2) 



This set of linear, first-order differential equations can be 

solved by conventional methods to yield 

PO(t) = e -4Xt 

Pi(t) = 4e -3?Lt (l-e-Xt) 

P2(t) = 6e -2Xt(l-e-Xt)2 

PF (t) = l-P(p) - PlW - P,(t) 

so that 

R(t) = 1 - P,(t) = 6e -2Xt _ Se-3At + 3e-4At 

as before. 

(3) 

The analysis so far has assumed perfect coverage. In particu- 

lar, it has been assumed that the first faulty element is correctly 

identified with probability 1. Suppose, instead, that it is cor- 

rectly identified with probability C; i.e., with probability 1-C 

the outputs of the first failed element are not ignored by the 

voter. Then with probability l-C, a second failure will cause the 

voter to accept two erroneous inputs and hence to produce an unre- 

liable output. The system reliability can be determined combina- 

torially by observing that the system will function properly if at 

time t it has sustained no more than one element failure or, with 

probability C, if it has sustained exactly two element failures. 

Thus, 

R(t) = 5 4 
0 

[P(t)14-irl-P(t)li 
i=O 

+ 0 4 C[P(t)12~1-PW12 (5) 

= R*(t) - 6(1-C) Mt)12[1-P(t) I2 

with R*(t) the perfect-coverage reliability as given in equation 1. 
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The Markov model of Figure 2 needs only to be modified as 

shown in Figure 3 to account for this imperfect coverage effect. 

An analysis virtually identical to that of the previous Markov 

Figure 3 

Markov Model of a 2-Out-of-4 Structure With 

Imperfect Coverage 

model establishes that 

PO(t) = e -4Xt 

Pi(t) = 4e -3ht(l-e-Xt) 

P2(t) = 6Ce 
-2Xt(l-e-ht)2 (6) 

p,(t) = l-P,(t) - P, (t) - p,(t) 

so that, again, the combinatorial 

identical results. 

The procedures for extending both the combinatorial and the 

model and the Markov model yield 

Markov methodologies to more complex structures are generally 

straightforward. One of the major limitations to both approaches, 

however, is already evident in the simple example just considered. 

This limitation stems from the fact that it is rarely satisfactory 

to treat the coverage probability as a constant parameter. And 

since, as already observed, coverage failures are typically the 

dominant source of system failure in highly reliable systems, it 

is particularly important that coverage be accurately modeled. 
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Suppose, for example, that in the structure just considered, 

the reason coverage failures can occur is that a certain amount 

of time, say 'c seconds, is needed to detect that an element has 

failed and to take the appropriate action to eliminate its output 

from subsequent voter inputs. Should a second failure occur dur- 

ing that interval, the voter is again presented with two poten- 

tially erroneous inputs and its output is consequently unreliable. 

The probability of a coverage failure, then, is the probability 

that two element failures occur within a T-second interval. Un- 

fortunately, this is not a constant probability. 

To handle this case combinatorially, observe that the proba- 

bility that the system has failed by time t is equal to the prob- 

ability that it has sustained either more than two failures, or 

exactly two failures within T seconds of each other. Thus, 

1 - R(t) = 5 ; 
0 

[P(t)14-i[l - pw1= 
i=3 

(7) 

+ 4*3P2(t) P' hl)P' h2)dn2drll 

If, as assumed earlier, P(t) = e -At , this expression is easily 

evaluated, yielding 

I 4P3(iz) - 3P4(t) t< -r 
R(t) = R*(t) - 6P2(t)[(l - e-") - P2(t) (e x=-l)l _ 

(8) 
t >-r 

with R*(t) as previously defined. The actual coverage probability 

(cf. equations 5 and 8) in this case is 

t< T 
(9) 

t >T - 

and is indeed a function of time. 
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The Markov method of modeling redundant structures can also be 

extended to include more complex coverage situations by using the 

method of stages (Ref. 1). 

The state diagram shown in 'Figure 4a illustrates the principle. 

Fiqure 4a 

Staqe Representation of a Constant Delay 

I 3x I 

Fiqure 4b 

Markov Model of a 2-Out-of-4 Structure 

With Constant Coverage Delay 

This diagram is characterized by the differential equation 

P 
Al 

'(t) = -n/T pA (t) 
1 

PA (t)) l< i< n - 
i 

' (t) = n/T (PA 
i-l 

(t) - PA 
i 
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These are easily solved to yield, when PA (0) = 1, 
1 

PA (t) = (nt/=) 
i-l ,-nt/-r l<i<n - - 

i (i-l)! 

Thus, the expected 

from state An is 

delay E(t) from entry into state Al to exit 

E(t) = c PA (t)dt= -r 
0 i=l i 

and the variance of that delay is 

Var(t) = 2 (t>dt - E2(t) = -r2/n 
i 

For large n, then, the series of states shown in Figure 4a provides 

a good approximation to a constant T-second delay. This same series 

of states embedded in the Markov model of a 2-out-of-4 structure 

(Figure 4b) represents, approximately, the constant coverage delay 

model under consideration here. 

This method of stages can be generalized by introducing other 

combinations of pseudo-states and selecting appropriate interstage 

transition rates. The advantage of this technique is that it pro- 

vides an approximate method for handling non-exponentially dis- 

tributed holding times without .abandoning homogeneous Markov models. 

The disadvantage is that good approximations often entail a sub- 

stantial increase in the number of required states, a number which 

can be enormous for the reliability models of interest here even 

without the addition of pseudo-states. 

It is possible to avoid adding pseudo-states and still retain 

some advantages of the Markov method by generalizing the notion of 

a Markov process. Consider the state diagram shown in Figure 5. 
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Ficure 5 

Semi-Markov Model of a 2-Out-of-4 Structure 

With Imperfect Coveraqe 

This diagram is similar to that of Figure 4b except that the n 

pseudo-states in the latter diagram have been collapsed into a 

single state here. The cost of doing this is to introduce a tran- 

sition rate* 6(11)/d(n) which is now a function of the time n from 

the entry into state A. If 7-l were a measure of the time from en- 

try into the initial state of the model, the model would describe 

an inhomogeneous Markov process. As it is, however, the process 

is not even Markov; the probability of a transition from state A 

to state 1 is a function not only of the two states but of the time 

spent in state A as well. Such processes are called semi-Markov 

(Ref. 2). 

Semi-Markov processes, while less analytically tractable than 

Markov processes, can nevertheless be represented in terms of linear 

integral equations and the state-occupation probabilities can often 

be obtained without undue difficulty. The state-occupation proba- 

bilities Pi(t) of the process of Figure 5, in particular, satisfy 

*The function S(n) here represents the probability density of a 
transition from state A to state 1 exactly n time units after a 
transition into state A, under the condition that no other tran- 
sitions were possible,and d(n) is the probability that no such 
transition has yet taken place by time n. Thus, the rate of 
such transitions, under the condition just described, is given 
by the ratio &(n)/d(n). 
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the following set of equations: 

PO(t) = e -4Xiz 

t P,(t) =4A e -x (t-?-l) d(rl) drl ,-=t 
0 

5 

t 
-x(t-q)) 6(n)dn e 

-3xt 
Pi(t) = 4 (l-e 

0 

t 
P2(t) = 3A Pl(n)e 

-2x (t-?-l) drl 
0 

(10) 

(The probability P,(t), for example, is just the product of the 

probability density of a failure at time t-n, the probability d(n) 

that a transition from state A to state 1 has not taken place in 

the intervening time n, and the probability e 
-31t that no other 

failure has occurred by time t. Entirely similar arguments can 

be used to establish the other equations.) In the present example, 

S(n) = 6d(n-~) with 6,(t) the Dirac delta function and ‘T the (fixed) 

coverage delay. Consequently, rl 
d(n) = 1 - s(rl')drl'= 

0 

and 

I 4e-3At(l-e-At) 
p,(t) = 4e-3Xt (,-w-d _ e-Xt) 

I 0 
pl(t) = 4e-3ht (1 - e -X(tz-T)) 

I 0 
P2W = 6e-X(2t+-c) (I _ e-h(t-r))2 

t< T 

t >T - 

t< 't 

t>-r - 

t< 'I 

t >T 

(11) 
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Since 

R(t) = PO(t) f P,(t) + Pi(t) + R2(t) 

this analysis yields results identical to the previous combinatorial 

analysis of the same example (cf. equations 8 and 11). 

As noted earlier, an overwhelming disadvantage of the Markov 

method of modeling and analyzing the reliability of redundant struc- 

tures under the conditions of interest here (with the consequent 

heavy emphasis on coverage) is the extremely large number of states 

needed to describe the system. This, of course, is only exacerbated 

if the method of stages is used to approximate non-exponential hold- 

ing time distributions, but it remains a decisive limitation even if 

semi-Markov modeling techniques are used. 

To gauge the magnitude of the problem, consider a system con- 

sisting of n stages.* If the ith of these stages can sustain as many 

as mi faults and still be operational, and if the number of distin- 

guishable states (e.g., active, benign, detected, etc.) that can be 

occupied by a stage i fault is Ri, then the number of possible opera- 

tional system states is 

N = 121 [z p+;-l)] (12) 

This number can be large even for relatively small parameters Ri, 

m ., and n. 1 When n=4 and Ri=6, mi=2 for all i, for example, N = 

614,656. Since CARE III actually allows n to be as large as 70 

and places no restrictions on m., it is clear that conventional 1 
Markov-like techniques are not appropriate to the problem at hand. 

*In CARE III terminology, the term "stage" refers to an ensemble 
of identical, interchangeable units. This term should not be 
confused with the "method of stages" described earlier. 
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Unfortunately, the combinatorial approach to reliability 

analysis suffers from a similar computational explosion. A com- 

binatorial analysis, in effect, entails an itemization of the 

(mutually exclusive) sequences of events that can lead to a 

failure and then a determination of the probability of each of 

these event sequences. Thus, the emphasis is on the paths con- 

necting the various possible system states rather than on the 

states themselves. Obviously, however, the number of such paths 

increases at least as rapidly as the number of states they inter- 

connect, so a purely combinatorial approach to problems of the 

complexity of those of concern here does not appear to be very 

attractive either. 
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3. The CARE III Approach 

The motivation for the CARE III approach to reliability 

analysis is evident from an examination of equation 12. It will 

be noted, in particular, that the magnitude of N in equation 12 

is a very rapidly increasing function of the parameters Ri. (If 

all Ri were equal to 1 rather than the 6 selected in the earlier 

example, N would be reduced from 614,656 to 81.) The reason 

these parameters Ri must, in general, be greater than unity is 

that the coverage associated with a failure depends upon the 

states of other failed elements in the system. That is, the prob- 

ability that the system recovers from a failure in element A may 

well depend upon whether or not element B has previously failed, 

whether its failure has been detected, whether an erroneous out- 

put has been produced as a result of that failure, and whether 

element B is in a failed-active state (capable of producing errone- 

ous outputs) or in a failed-benign state (incapable, at least 

temporarily, of producing further errors). 

The key to reducing Ri without decreasing the ability to in- 

clude all relevant coverage factors into the reliability model is 

suggested by the previous analysis of the 2-out-of-4 structure. 

Figure 3 shows a Markov model of that structure with the entire 

effect of coverage reflected in the state-transition rates. While 

the coverage probability is shown as a constant in Figure 3, it 

was demonstrated that the effect of more complex coverage situ- 

ations could be handled by allowing this probability to be a suit- 

ably defined function of time (cf. equation 9). 

The CARE III method, then, is to represent the structure of 

interest as an inhomogeneous Markov model, with the different 

states distinguished only by the numbers of faults in each of the 

various stages comprising the system. The state-transition rates 

are separately determined using a coverage model to account for 

16 



fault-state effects. Although combinatorial techniques could have 

been used (as they were, for example, to derive the results of 

equation 9), the coverage model found to be most appropriate for 

CARE III is one based on semi-Markov techniques similar to those 

used in analyzing the model of Figure 5. 

The potential advantage of this approach is apparent. The 

number of states that have to be accounted for in the reliability 

model is reduced from that given in equation 12 to a number more 

manageable: 

n 
N' = fi ( mi+l) (cf. equation 12). 

i=l 

The cost of doing this, of course, is 1) to force the reliability 

model to be inhomogeneous*, and 2) to necessitate a separate analy- 

sis to determine the needed coverage parameters. For reliability 

assessment problems of the complexity of concern here, however, the 

advantages of this approach, in terms of computational effort, far 

outweigh its disadvantages. In effect, the model has been reduced 

from one having N = nl x n2 x...x nR states to one having nl + n2 + 

. . . + n R states, with n i denoting the number of relevant states 

given that i faults have already taken place. (The reduction is 

in fact more dramatic than this since much of the computational 

effort needed to determine the transition functions given i faults 

can also be used to determine these functions given j # i faults.) 

In order to realize the full advantage of this reliability and 

coverage model separation, however, it is necessary to introduce 

*This increased flexibility does have ancillary advantages, however: 
the hazard rates associated with the various system elements are no 
longer restricted to be time-independent. There are situations in 
which this added degree of freedom is needed to reflect accurately 
the physical events actually being modeled. 
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some approximations having to do with the probability of occurrence 

of certain joint events. If A and B represent two events and the 

probability of an event E is denoted P(E), then, as is well known, 

the probability that either A or B occurs is 

P(A+B) = P(A) + P(B) - P(A=B) 

with P(A=B) the probability that A and B both take place. Now sup- 

pose both A and B represent compound events: that is, A is said to 

have occurred only if the events Al, A2, . . . . An have all occurred, 

and similarly for B. Suppose further, that at least one of the B 

events, say B., 1 is independent of all events in the set {Al,A2, . . . . 

AnI . 

Then 

P(A'B) = P(BIA)P(A) <_ P(Bi)P(A) 

and 

P(A) [~-P(B~)] + P(B) 2 P(A+B) 5 P(A) + P(B) 

It follows that: 1) P(A+B) is always overbounded by the sum 

of the probabilities of the two individual events A and B. 2) If 

either of the two events depends on the occurrence of some subevent 

that is not part of the other, and if the probability of this sub- 

event is small, the error introduced by approximating P(A+B) by 

P(A) + P(B) is also -small. Specifically, 

P(A) + P(B) - P(A+B) <_ P(A)P(Bi) 

In the present instance, the events of concern are those that 

lead to system failure. The probability of any one of these events 

is therefore not greater than the probability Pf(t) of system failure, 

a probability that is already small, for all t of interest, for the 

highly reliable systems for which CARE III was designed. Thus, if 
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two events A and B both lead to system failure, if one of these 

events depends upon a subevent Bi not common to the other, and if 

the probability of this subevent is also of the order of Pf(t) 

or less, the error introduced by approximating the probability of 

either event by the sum of their individual probabilities is of 

the order of Pf2(t). Since Pf(t) is almost always less than 10 -4 

for cases of interest here and is typically of the order of 10 
-8 

or less (if this were not true, reliability models much simpler 

than CARE III would suffice), the error introduced by such approxi- 

mations is truly negligible. Moreover, even if this were not true, 

such approximations overbound the probability of a system failure 

and hence provide a conservative reliability estimate in any case. 

Details as to exactly how these approximations are introduced will 

become apparent in the ensuing discussion. 

(i) The CARE III Reliability Model 

Let P jli(t(') denot e the conditional probability that a system 

is in state j at time t given that it was in state i at time T. 

Similarly, let P alj i(tln,T) denote the conditional probability that 

a system is in stat; R at time t given that it was in state j at 

time n and in state i at time T. Then, clearly, for any 6Wt, 

with the sum taken over all the (assumed finite number of) possible 

intermediate states j. (If, for all -r<n<t, Palj i(t)n,T) = Palj(t[Tl), 

then equation 13 reduces to the Chapman-Kolmogor& equation for con- 

tinuous-time, discrete state systems.) 

It follows from equation 13 that 

P@t + A+) = PRli(tlT)PRIR i(t + Atlt,T) 
I + c P 

j#R 
jlittlTjP 21-j I i(t + AtI t,T) 
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Let 

(+) = A;?0 
1 

AQli 

- PR R i(t + At]t,t> 
I 

At 

and 

'!L] j,i (t + Atlt,T) 

'j%li (#r) = A:yo At 

Then, rearranging terms in equation 14, dividing by t and taking 

the limit as t+ 0 yields 

aPRli ctl T) 

at = -P,,i(tl~)AQli(tl~) 

(15) 

This set of equations is a form of the Kolmogorov forward 

equations. It differs from the more conventional form in that 

the transition parameters X 
j&iittlT) 

are also functions of the 

initial state i of the system at time '1. If the notation indi- 

cating the condition that the system be in state i at time 'I is 

suppressed, equation 15 can be expressed in the more convenient 

form 

dpE (t) 

dt = -Pp~p) + c Pj(mjg(t) (16) 
j#fi 

It must be remembered in the ensuing discussion, however, that 

the transition parameters may also be functions of the initial 

conditions. 

In the CARE III context, it is necessary to distinguish states 

both in terms of the number of faults that have been sustained 

in each stage of the system but also, of course, with regard to 
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whether or not the system is still operational. 

structure is shown in Figure 6. Here PR denotes 

state with R faults and Q R a failed state with R 

The general 

an operational 

faults. 

(1) ‘ia A/ 
\ 

‘ia-( t, 

Figure 6 

Segment of CARE III Reliability Model 

State Diagram 

(Since distinction is made as to where the faults are located, 

the index R is actually an n-component vector with n the number 

of system stages.) If PQ(t) and Q%(t) are the probabilities of 

being in states PR and QR, respectively, at time t, then Kolmo- 

gorov's equations take the form 
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dpR (t) 
= 

dt 

dQR (t) 
= 

dt 

with 

yt) = 

-pp)Xp) + 

pg (a l-IR (t) + 

c (1) 
Pj(t) Xja(t) 

j#R 

c (2) 
Pj(t) Xja(t) 

j#t 

(1.) (2) Il,w + c rx,j(t) + X~j(t)l 

(174 

(17b) 

The term am here represents the rate of occurrence, in a 

system which is still operational after R failures, of events that 

cause the system to fail even though no new faults have taken place.* 

The terms A,!;)(t) and A;:)(t) represent the rates of occurrence of 

faults that take the system from operational state j to, respective- 

ly, operational state R and failed state R. Since, as has been 
repeatedly observed in this discussion, the systems of concern here 

(1) are highly reliable, AiP (t) Ic\\ must in general be much larger than 
x ilit) and A,(t) must ie large compared to pi(t). Thus, 
approximation, equation 17a can be rewritten in the form 

dPR (t) 
= 

dt 
--Pk (t) AR*(t) + 

c 
Pj(t)X. *k(t) 

JR 
j#fi 

(1) (2) - 
with X 

jfi 
*(t) = x jg(t) + Xja(t) and X&*(t) = 

c 
j#a 

to a good 

(loal 

And, if 

*Such events can be caused, for example, by latent faults becoming 
active or producing erroneous outputs; this will be elaborated upon 
shortly. 
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the solutions to these equations are denoted by P&*(t), equation 

17b assumes the approximate form 

dQR (t) (2) 
= 

dt 
PR*wP,(t) + c 

Pj*(t)X ja (t) (18b) 

j#fi 

Although the differential equations (17) could be solved 

directly, the approximations introduced in replacing P&(t) by 

PI1*(t) are indeed negligible for all cases of interest. It will 

be observed, in fact, that P ,*(t) is just the probability that 

the system would be operating with R failures were the coverage 

perfect. Thus, replacing PR(t) in equation 17b by P%*(t) is 

equivalent to allowing systems that have already suffered from a 

coverage failure to be counted among those still susceptible to 

coverage failures. This is, in turn, equivalent to replacing 

P(A+B) with P(A) + P(B) with A and B both representing highly un- 

likely coverage failure events. As noted earlier, such approxi- 

mations introduce an error of the order of p2 with p the, in 

this case, very small probability of either of these events by 

itself. The advantage of introducing this approximation is that 

the probabilities PR*(t) can be readily evaluated using straight- 

forward combinatorial techniques, thereby avoiding the need for 

the more time consuming, and negligibly more accurate, calculation 

of the probabilities P%(t) as defined by the equation 17a. 

(ii) The Coverage Model 

The purpose of the CARE III coverage model is to determine 

the transition rates, pR(t) and X ,(i)(t), needed to calculate the 

failed state probabilities Q,(t) as defined by the set of equations 

18b. CARE III recognizes three basic causes of coverage failure: 

1) An existing latent fault causes the system to take some unaccept- 

able action (an error is propagated). 2) A new fault occurs which, 
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in combination with an existing latent fault, prevents the system 

from functioning properly. 3) A pair of existing latent faults 

for the first time reach a system-disabling state. The transition 

rates associated with the first and third of these events are col- 

lectively represented by the term p&(t) in the equations 18b; the 

rate of occurrence of the second type of event is represented by 

the term A;:)(t). A fault is said to be latent from the time it 

first occurs until it is either detected and isolated from the sys- 

tem or, in the case of a transient fault, reaches a benign state. 

The function of the coverage model is to represent the behavior of 

each fault during its latency period. 

Note that the second and third causes of coverage failure both 

depend on the existence of a pair of latent faults. It often hap- 

pens that a fault, while entirely benign itself, can become lethal 

in combination with some other fault. (A triple-modular redundant 

configuration consisting of three identical elements feeding a 

majority voter is an obvious example of this. If any one element 

malfunctions, its output is ignored by the voter. If a second 

element fails before the first failure is detected, however, the 

combination of the two could well produce an erroneous output.) 

In many reliability analyses, such second-order effects are negli- 

gible compared to other causes of failure and consequently are 

simply ignored. In the highly reliable systems for which CARE III 

was designed, however, such effects are frequently the dominent 

cause of system failure. 

Obviously, not all pairs of latent faults pose any threat to 

the system. Faulty modules providing inputs to two independent 

voters, for example, should create no difficulty even if both are 

simultaneously in the active, error-producing, state. It is 

therefore necessary for the user to specify all critical pairs of 
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faults: i.e., to specify those pairs of modules which could cause 

the system to fail should the second modules malfunction before 

the first one has been identified as faulty. (This critical-pair 

specification is easily accomplished using the same input routine 

used to specify the overall system configuration: see below.) 

The coverage model thus actually consists of two coverage 

models: a single-fault model to trace the various states of a 

single fault, and a double-fault model to track fault pairs. The 

single-fault model is shown in Figure 7. When a fault first occurs, 

it is said to be in the active state (state A in Figure 7). If the 

fault is transient or intermittent, it may jump from the active to 

the benign state (state B). These transitions take place at a con- 

stant rate a; for permanent, non-intermittent faults, of course, 

a = 0. If the fault is intermittent, the reverse, benign-to-active, 

transition takes place at some constant rate 8; for transient faults, 

a # 0 and f3 = 0. In the benign state, the fault is incapable of 

causing any discernable malfunction. Thus, it can neither be detected 

nor can it produce erroneous output. In the active statei however, 

the fault is both detectable and capable of producing incorrect out- 

put. The rate at which either of these events takes place depends 

upon the operating environment and, in particular, on how frequently 

and how often the faulty element is exercised in a way that causes 

the defect to manifest itself. Once an erroneous output is produced, 

the system is said to be in the active-error state (+>. Again, if 

the fault is either intermittent or transient, it may jump to the 

benign state, although now the error is still present so the state 

is designated the benign-error state (state BE; the reason for dis- 

tinguishing between states AE and BE will shortly become apparent). 

When the faulty element is in either of the two error states, the 

error propagates at some rate +>, T measured from the time of entry 

into that state, to some point in the system at which it is either 
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Figure 7 

CARE III Single-Fault Model 

t = time from entry into 
active state 

7 = time from entry into 
error state 
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detected (e.g., through a decoder or a voter) or else escapes 

undetected and results in a system failure (state F). The proba- 

bilities of these two alternatives is C and l-C, respectively. 

If the fault is detected, either through testing or through the 

detection of an erroneous output, the faulty element enters the 

active-detected state A,, or benign-detected state BD, depending 

on the state ,of the fault when it was detected. At that time 

a decision is made as to whether the faulty element is to be re- 

tired from the system or whether it can continue to be used. 

This latter decision might be made, for example, if the fault 

recovery procedure included a diagnostic routine designed to dis- 

tinguish between permanent and transient faults. If the fault is 

detected in the active state, the decision is made with probability 

pA that the element must be retired from service: if it is detected 

in the benign state, the same decision is made with probability Pg. 

Thus, with probabilities l-PA and 1-P B' respectively, the faulty 

element is returned to service following the detection of the fault. 

(The dashed lines in Figure 7 indicate that the transition takes 

place immediately with the probability indicated.) 

Note that as long as the option is available to diagnose a 

detected fault as transient, it is possible that this decision is 

made erroneously. Thus PB and even P A may be less than unity even 

when the fault is in fact permanent or intermittent. Similarly, 

PB and especially PA may be greater than zero when the fault is in- 

deed transient. The model assumes that the effect of a decision that 

the fault is transient is to eliminate the error, if an error had 

already been produced, and to return the faulty element to the error- 

free, active or benign state, depending on its state when the fault 

was detected. If the fault was transient and detected in the benign 

state, it either remains in the benign-detected state or returns to 

27 



the error-free benign state. In either case, since 6 = 0, it can 

never again become active so it ceases to pose any further threat 

to the system. If the.fault is transient and detected in the 

active state, or if it is permanent or intermittent and detected 

in either state, and if it is diagnosed as transient, it remains 

latent and may have another chance to cause the system to fail. 

Even more detailed single-fault models could, of course, be 

defined. Non-constant active-to-benign and benign-to-active tran- 

sition rates could be allowed, for example, and distinctions could 

be made between single and multiple errors. Moreover, such models 

could easily be incorporated into the CARE III structure. The 

model selected, however, was felt to be an effective compromise 

between the desire to allow the user as much flexibility as possi- 

ble in defining the behavior of a faulty element, and the need to 

keep the model from becoming so baroque that the user dispairs of 

ever defining all of the parameters. At present, the fault detec- 

tion rate G(t)/d(t), the fault generation rate P(t)/r(t), and the 

error propagation rate s(t)/e(t) are all restricted to assume the 

form 
t 

$(t)/[l - $h-ddrll 
0 

with 

$(t) = c$e-'t o< t 

or 
0 < t < 1/a 

otherwise 

That is, either the transition rates or the transition density 

functions are assumed to be constant over some range; the function 

and, of course, the constant can be independently selected by the 

user for each of the three transition rates. In addition, the user 
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can define up to five fault types, each with its own set of 

specifiers (u, 8, 6(t), P(t), s(t), C, PA, PB), and designate 

that any or all of these types can afflict each of the system 

stages, with arbitrary rates of occurrence for each type at each 

stage. 

It might be supposed that the double faults could be modeled 

by simply combining two single-fault models and then determining 

if, and when, the two independent fault states form some lethal 

combination. The problem with this approach is that the two fault 

states may independently form a lethal combination repeatedly and 

the same system failure thereby counted multiply. (Since a second 

entry into a state is not necessarily a small-probability event 

given that the first entrance took place, the previously-used ar- 

gument, that the probability of both events is of the order of 

the square of the probability of either of them, is not applicable 

here.) It is therefore necessary to introduce a separate double- 

fault model. The model selected is shown in Figure 8. This model 

is applicable if a second fault occurs when the first fault is in 

the benign (error-free) state. (If this is not the case, the com- 

bination of the two faults is treated as lethal upon the occurrence 

of the second fault: see below.) Thus, the occurrence of the second 

fault places the fault-pair in the A2Bl state (first fault benign, 

second fault active). From there, the fault-pair can go to the 

BlB2 state (both faults benign) if the second fault becomes benign 

before the first fault becomes active, to the detected state D if 

the active fault is detected and diagnosed as permanent, or to the 

failed state F if the first fault becomes active with the second 

fault still also in the active state or if the second fault causes 

an error to be produced. Since both faults are benign in the BlB2 

state, the only possible transitions from that state are back to 
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FIGURE 8 

CARE III DOUBLE FAULT MODEL 
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the A2Bl state or to the A B 12 state (first fault active, second 

fault benign) with its entirely analogous transitions. 

It will be noted that the double-fault model is conservative, 

relative to the single-fault model, in its definition of a failed 

state. If both faults are ever simultaneously active, the system 

fails regardless of whether or not either fault has resulted in an 

error. Moreover, a system failure results if either fault produces 

an error even though that error could potentially be detected be- 

fore it causes any system damage. Obviously, a more elaborate 

model could have been postulated, one containing additional states 

to distinguish, among other things, the various possible error con- 

ditions. As ifi the case of the single-fault model, however, a com- 

promise is required between the need to model accurately the impor- 

tant contributors to coverage failures and the desire not to over- 

burden the user with overly-fine distinctions. If both faults in 

a critical-pair are active, for example, and one of them produces 

an error, the probability that that error is detected before it 

causes system damage is presumably altered, possibly significantly, 

by the presence of the second fault. Similarly, the coverage para- 

meters may well be affected if both faults produce errors before 

either error propagates. A more elaborate double-fault model would 

force the user to examine these issues for every critical-fault 

pair. 

The compromise represented by the double-fault model seems to 

be a reasonable one for two reasons: 1) The most significant event 

in determining the probability of a lethal double-fault is the ex- 

istence of the latent first fault at the time of the second. The 

probability of this event, however, is determined using the single- 

fault model and hence does not depend on the details of the double- 

fault model. 2) .The conservativism of the double-fault model causes 

the probability of a double-fault coverage failure to be overbounded. 
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Thus, the double-fault model is consistent with the other CARE III 

approximations in that it results in a tight overbound on the 

system unreliability. 

The single- and double-fault coverage models are used by the 

CARE III reliability model as follows: Let pf(t-TIR,t) be the 

probability density of a specific type of element failure at time 

t-T, given that R failures have occurred by time t. Then, if 

pCF(-r,f) is the probability density of system failures due to the 

single fault f r time units after its occurrence, the rate of oc- 

currence of system failures at time t due to this event is just (1) t 
p,(t,f) = 

0 
PcF(~'f)pf(t-~IR,t)d~ (19) 

Similarly, if PA(T,f) and PB(T,f) are the probabilities that the 

fault f is in the active and benign states, respectively, T time 

units after its occurrence and if pCF(T,fl,f2) is the probability 

density of system failures due to the critical-fault-pair fl,f2 

'I time units after the occurence of the second fault, the rate of 

system failures at time t due to the first of a critical pair of 

faults being active when the second takes place is 

(2) t 
hjR(t,flf2) = pf (t) 

PA(Ttfl)Pfl 
(t-+,t)dT 

2 0 
(20) 

with j representing the number of element failures before the fault 

f2 and R the number after f2. (Recall that, in general, j and R 

are vectors whose components indicate the number of failures in 

each stage.) 

The rate of system failures at time t due to a critical-fault- 

pair subsequent to the second fault is 
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(2) t 
UR(Lfl,f2) = 

0 
P&lfl,f&?f (t-+,t) 

2 

(21) 

0 
PBhl~fl)pf k-y~21R,t)d~ld~2 

1 

The transition rates indicated in Figure 6 are thus 

c (1.) c (2) Il,w = lp,f) + Frg (Lfl’f2) 
all f all critical 

pairs flf2 

(2) 

2 

(2) 

all critical 
pairs flf2 

(22) 

Note that the function pf(t-TjR,t) is conditioned on the 

event that the system has suffered exactly R element failures by 

time t. Actually, the function of interest is subject to the 

additional condition that the system has also not failed by time 

t since the transitions of concern are those taking the system 

from an operating state to a failed state. Without this added 

condition, the function pf(t--rlt,R) is easily evaluated; with it, 

it is obviously considerably more difficult. Ignoring this con- 

dition, however, is entirely equivalent to replacing P%(t) with 

PR*(t) as previously discussed and introduces errors of the same 

order of magnitude. That is, the approximation causes this prob- 

ability Pf(t) of system failure to be overestimated by an amount 

of the order of Pf2(t). 

(iii) Mathematical Details 

The following paragraphs describe in detail the mathematical 

model as it is implemented in CARE III. As already mentioned, I 
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the system to be modeled is assumed to consist of some number (up 

to 70) stages with each stage composed of one or more identical 

interchangeable elements or modules. The modules in each stage 

are subject to up to five user-defined categories of faults. A 

fault is characterized in terms of its rate of occurrence and in 

terms of its coverage model parameters. Fault occurrence rates 

are constrained to be of the form wXt O-l (i.e., fault distribu- 

tions are constrained to be Weibull)with w and X user defined. 

The user can also specify up to five sets of coverage model para- 

meters (a, 8, p(t), s(t), 6(t) , c, PA' PB) ; each such set defines 

a fault type. (Thus, for example, it is possible to define a 

permanent fault type, c1 = 0; a transient type, c1 f 0, B = 0; and 

an intermittent c1 # 0, 6 # 0; each having its own characteristics 

with regard to detectability, error-propagation, etc.) Fault 

category xi then refers to a fault that can affect any module in 

stage x; it is characterized by the parameters X , w 
X. x. f and j 

with j a fault-type designator. 1 1 

In addition, the user must specify the number of modules nx 

initially available at each stage, the minimum number mx needed 

for that stage to function properly, the various combinations of 

stage failures that constitute a system failure, and the proba- 

bilities bxy(wxfvy) that a specific module in stage x forms a 

critical pair with a specific module in stage y given that vx 

stage-x modules and v 
Y 

stage-y modules are known to have failed 

and are therefore no longer being used.* 

*These last two tasks are both accomplished with relative ease 
through a CARE III user interface incorporating a program called 
FTBEE developed by Boeing Aircraft Co. and described in the CARE 
III User's Manual. 
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On the basis of this user-supplied information, CARE III 

then determines the system unreliability using the equation 

R(t) = 1 - R(t) = 
c 

Q,(t) + c pI1*(t) 

R&L - &EL - 

(23) 

with L the set of module failure combinations that would leave 

the system operational in the absence of a coverage failure, < the 

complementary set, P ,*(t) the probability that the system would 

be in state R at timg t in the absence of a coverage failure, and 

Q,(t) = c 
'j 

(-cl&-E >p 
Y R-Ey 

*(~)(n~-R~+l)l~ (T) 
j 1 1 (24) 

+ A' (~l&)P~*(-c) + 

This equation is seen to be identical to equation 17b with 

lp = A'(tl&) + a'(t)&) 

(2) x ja(t) = c cy (T) - i 

(T@-E~) (ny-Ry+l)Xy 
i 

and j 
- = R-Y with E Y 

the unit vector denoting a stage-y module. 

(2) 
It will be recalled from equations 19 and 20 that p,(t) and 

- Xi,(t) are defined in terms of functions of the form t 
0 

p2 ITI pl (t--c) dT 

with p,(t) a measure of the rate at which a certain class of faults 

occurs and P,(T) a function of the interval T between that occur- 

rence and the entry of the fault into a particular coverage-model 

state. Since, typically, faults occur at rates no greater than 
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one fault every several thousand hours, and since coverage-state 

time constants are usually of the order of fractions of seconds 

and rarely exceed a few minutes in duration, pi(t) is a much more 

slowly varying function of time than is p,(~)~ Thus, to a very 

good approximation 

Pl(W z a(t) + Tb(t) + T2c(t) (25) 

over the range of T for which pl(-c) is not negligibly small, with 

a(t), b(t), and c(t) suitably defined. This approximation is used 

in CARE III with a(t), b(t), and c(t) defined to make the approxi- 

mation exact at the two end points and at the midpoint of the range 

of interest of T. The major advantage of introducing this approxi- 

mation is that, with it, 

t 

0 
p2(T)pl(t-T)dT = a(t)m2' W + b(t)m2lW + c(th22W (26) 

with 

m2i(t) = 
t . 

0 
-c=P~(T)~-c 

Thus, the convolution can be separated into two parts, one part 

depending only on the reliability-model function pi(t) and the 

other involving only the first three moments of the coverage-model 

function p2(T). Moreover, these moments need be evaluated only at 

those points of time t relevant to the reliability model. This 

significantly simplifies the interface between the coverage and 

reliability models. 

With these preliminaries, the reliability model functions 

used in CARE III are itemized in Table 1 and the coverage model 

functions in Table 2. 

36 

.‘: *'. -.. *. ___ ..: --. 



Table 1 

Reliability Model Functions 

FUNCTION MATHEMATICAL EXPRESSION DEFINITION 

e 
-Axi (t) 

PERMANENT PROBABILITY THAT A GIVEN STAGE 

X MODULE HAS NOT EXPERIENCED A 
cH DPT (~ IXi)d~ TRANSIENT CATEGORY-xi FAULT BY TIME t 

yt) 

ax, (t) 
1 

ax Ct 1 

I-I R (t) 
i xi 

HL (t IXi) 
l-Rx(t) 

.HL (t IXi) 

Iz I * 1 
ax, (.tZ 

1 

(PERMANENT) 

PERMANENT 

TRANSIENT 

RELIABILITY OF A STAGE X MODULE 

PROBABILITY THAT A GIVEN STAGE 

X MODULE HAS A CATEGORY-xi 

LATENT PERMANENT (TRANSIENT) 

FAULT AT TIME t GIVEN THAT IT 

HAS (NOT) EXPERIENCED A PER- 

MANENT OR LEAKY TRANSIENT FAULT 

BY TIME t 

PROBABILITY THAT A GIVEN STAGE 

x MODULE HAS A LATENT (PERMAN- 

ENT) FAULT AT TIME t GIVEN THAT 

IT HAS EXPERIENCED SOME PER- 

MANENT FAULT BY TIME t 



Table 1 (Continued) 

Reliability Model Functions, 

FUNCTION MATHEMATICAL EXPRESSION DEFINITION 

w 
03 R 

xifY’ ttlg 
3 

“xi’Yj’ 

RX 0 1-I 
X 

(l-ax (t> ) 
Rx-Ux px a 

X (t) 

c b 
I-rxrN 

x y(~x-~xr~y-~y)P(~x'tl~x~ r 
Y 

WIJy tlay)C(xi,Yj)ax,(t)ay (t) 
1 j 

pXpy xi'Y' 3 = PERMANENT 
ax(t)ay(t) 

XfY 

1-1, (u,-1) xifY’ 3 = PERMANENT 

a:(t) x=y 

PROBABILITY THAT A SUBSYSTEM 

CONTAINS 1-I, STAGE x LATENT 

PERMANENT FAULTS GIVEN THAT 

IT HAS fix STAGE X PERMANENT 

FAULTS 

EXPECTED NUMBER OF Xi,Yj- 

CRITICAL FAULTS AT TIME t 

GIVEN & PERMANENT FAULTS 

1-I,In -!I > 

ax (t) 

x. = 1 PERMANENT 

‘j = TRANSIENT 



Table 1 (Continued) 

Reliability Model Functions. 

FUNCTION MATHEMATICAL EXPRESSION DEFINITION 

c(xilYj) 

(CONT, ) 

(nx-Rx) uy 

ay (t) 

x. = 
1 TRANSIENT 

‘j = PERMANENT 

(n x- ix’ ( uy-Ry) xifY’ 
3 = TRANSIENT 

XZY 
W 
u) 

D 
xi'Y 

ttlg 

c klR) 
yj 

(n x-kx) (nx-ix-l) Xi’Yn = TRANSIENT 3 
x=y 

c b 
l-lxJJ 

x y~~x-~x’~y-~y~~~~x’tl~x~ I EXPECTED NUMBER OF XiY- 

Y CRITICAL FAULTS, GIVEN L 

wy’tl~y) PERMANENT FAULTS, THAT WOULD 

BE CREATED AS THE RESULT OF 

I 

ax, W 
1 A STAGE Y FAULT AT TIME t 

‘x a,(t) 
x. = 

1 PERMANENT 
. 

I In x-‘x)ax. (‘1 Xi = TRANSIENT 
1 

c HB (t I Xi) 
xi HL(tlxi) Dxi,yj (t/R) 

PROBABILITY THAT A CATEGORY Yj 

FAULT WOULD PRODUCE A SYSTEM 

FAILURE AT TIME t GIVEN & 

FAULTS AT TIME t- 



Table 1 (Continued) 

Reliabilitv Model Functions 

FUNCTION MATHEMATICAL EXPRESS ION DEFINITION 

A’ (tl&) c 
X.rY. 

hDF(tIxi’Yj) B RATE WHICH SYSTEMS HAVING 5 
1 J HL(tlxi)HL(tlyj) xilY' b-l&) 

3 FAULTS FAIL AT TIME t DUE TO 

CRITICAL FAULT CONDITIONS 

a’ (t@) c ‘xhF(tlXi) RATE AT WHICH SYSTEMS HAVING 
X. 

g 
1 l-Rx(t) i FAULTS FAIL AT TIME t DUE TO 

PERMANENT ERROR PROPAGATION 

+ c 
X. 

(nx-Rx)hF(tlxi) 

1 

TRANSIENT 

+ CL(‘IXi)M~(tlXi) 

+ cg(tlxi)M; (tlxi 1 

PROBABILITY OF A LATENT CATEGORY 

xi FAULT AT TIME t 

PROBABILITY OF A NON-BENIGN 

LATENT FAULT AT TIME t 



Table 1 (Continued) 

Reliability Model Functions I 

FUNCTION MATHEMATICAL EXPRESSION DEFINITION 

Hg(tlXi) ag(tlXi)M~(tlXi)+bg(tlXi)M~(tIXi) 

+ Cg(tlXi)M~(tlXi) 

PROBABILITY OF A BENIGN 

LATENT FAULT AT TIME t 

H DpTttlXi) 

hp(tlXi) 

aDp(tIXi)m~p(tlXi)+bDp(tlXi)m~~(tlXi) ~~~~~~ILITY THAT A CATEGORY xi 

+ cDp(tlXi)m~p(tlXi) 
TRANSIENT FAULT IS DETECTED AS 

PERMANENT 

aD~(tlXilYj)m~~(t~xilYj) 

+ bDF(tIXi,Yj)m~F(tlXi'Yj) 

RATE AT WHICH AN XiYj-CRITICAL 

FAULT CAUSES SYSTEM FAILURE 

+ CDF(tlXilYj)m~F(tlxilYj) 

+ cF(tlXi)m~(tlXi) 

RATE OF ERROR PROPAGATION 

FAILURE DUE TO A CATEGORY Xi 

FAULT 



Table 1 (Continued) 

Reliabilitv Model Functiou 

FUNCTION MATHEMATICAL EXPRESSION DEFINITION 

aX(t Ixi) 
ax(tlxir Yj’ 

5 x (t) X = DP,L,B,&F WEIGHT FUNCTIONS USED IN 
i 

X. 
1 = TRANSIENT CONVOLUTIONAL APPROXIMATION 

Xx (t) Rx(t) X = LIB&F 
(CF, EQUATION 25) 

i x. = 
1 

NON-TRANSIENT 

H,(t/x& (t) X = DF 
j 

Y i = TRANSIENT 
J 

Hg(t IXi) hy (thy(t) X = DF 
j 

\ Y 
j 

= NON-TRANSIENT 

t = At r 

(3k2-l)f(t) - 2k2 [f(t+;r) + f(+;'r)] + (k2+lMW 

-- 
(k2-1)t 

t = kAtr, < t,, k odd 

3f (t) - df (t/2) + f lo) 
t 

t = kAt 
rr 

< t n, k even 
all X 

\- 

3f (t) - 4f(t-tn/2) + f(t-t,) 

tn 
t > t, - 



Table 1 (Continued) 

Reliability Model Functions 

FUNCTION MATHEMATICAL EXPRESSION DEFINI.TI.ON 

% cxw 

c,(tl 

tn 

xi) 

xi’y’ 

1 
1) 

/ 
0 

I 
t = Atr 

I f(t) - f(t+A2tr) + f(+itr) + f(O) 

k2 - (AtrJ21/2 

t= kAtr < tn 

k odd 

f (t) - 2f (t/2) + f(O) -_ 
t2/2 

t = kAtr < tn 

k even 

i 

f(t) - 2f(t-tn/2) + f(t-t,) 

tn2/2 
t > tn - 

min t = n t r' n even, such that P,(t) 5 8 

or P,(t) < 8 with 8 a user-defined threshold - 



Table 2a 

Sinqle-Fault Model Equations 

FUNCTION MATHEMATICAL EXPRESSION* DEFINITION 

p,(t) 

‘bk) 

pe (t) 

t e-(awB)Tr(T)d(r)dT 
0 

-at t 
e r(t)d(t) + 13 

0 
$(t-T)Pah)dT 

t 
b(t) + B 

0 
$(t-T)Pb(T)dT 

t -ciT t 
e Pk)d(T)e(t--r)dT + f3 

0 0 
$(t-T)Pe(T)dT 

B 
-1 

TIMES THE PROBABILITY 

INTENSITY OF RE-ENTERING 

STATE A EXACTLY t TIME 

UNITS AFTER THE PREVIOUS 

ENTRY 

PROBABILITY OF BEING IN 

STATE A AT TIME t WHEN 

PA = PB = 1 

PROBABILITY OF BEING IN 

STATE B AT TIME t WHEN 

PA = PB = 1 

PROBABILITY OF BEING IN 

STATE AE OR BE AT TIME t 

WHEN 'A = 'B = 1 

* t HERE IS A MEASURE OF THE TIME SINCE THE ENTRY INTO STATE A, 



Table 2a (Continued) 

Sinsle-Fault Model Equations 

FUNCTION MATHEMATICAL EXPRESSION* DEFINITION 

P, It) 

p,(t) 

PfW 

yt) 

t 
e -%t)d(t) + B 

0 
@(t--T)peh)dT 

t 
e -Clt6(t)r(t) + B 

0 
$(t-T)p;(T)dT 

t 
(1-C) 

0 
p,(T) E (t-T)dT 

t 
C Pe(T)E(t-T) 

B + ae-(a+8) (t-T) 
0 a+ e > 

d-c + p,(t) 

* t HERE IS A MEASURE OF THE TIME SINCE THE ENTRY INTO STATE A, 

INTENSITY OF ENTRY INTO 

STATE AE AT TIME t WHEN 

PA = PB = 1 

INTENSITY OF ENTRY INTO 

STATE AD FROM STATE A AT 

TIME t WHEN ‘A = pB = 1 

INTENSITY OF ENTRY INTO 

STATE F AT TIME t WHEN 

PA = PB = 1 

INTENSITY OF ENTRY INTO 

STATE AD AT TIME t FOR 

THE FIRST TIME 



Table 2a (Continued) 

Single-Fault Model Equations 

FUNCTION MATHEMATICAL EXPRESSION* DEFINITION 

ul,w 

x,ft) 
z 

‘dp (t) 

CC t 
z-g 

P,(T) (1 _ e-(atB) (t-T) )E(t-T)dT 
0 

INTENSITY OF ENTRY 1 NT0 

STATE B. AT TIME t FOR 

THE FIRST TIME 

PROBABILITY OF HAVING 

t 
YB(Tk 

-B (t-T)dT 
ENTERED STATE BD FOR THE 

0 
FIRST TIME AND THEN RE- 

MAINING IN THE BENIGN 

STATE UNTIL TIME t 

t 
' pA o \(T)dT + PB 
0 

yg(')d-r 

PROBABI LITY THAT A FAULT 

HAS BEEN DIAGNOSED AS 

PERMANENT BY TIME t 

FUNCTION RELATING PROB- t FX(t) F,$t) + [(l-PA)yA(t-T) + (l-P,)f?X,(t-T)]F,(T)dT ABILITIES AND INTENSITIES 

0 DERIVED WHEN PA = PB = 1 TO 

THOSE SAME QUANTITIES WHEN 

‘A & ‘B ARE ARBITRARY 

+ t HERE IS A MEASURE OF THE TIME SINCE THE ENTRY INTO STATE An 



Table 2a (Continued1 

Sinqle-Fault Model Equations 

FUNCTION MATHEMATICAL EXPRESSION* DEFINITION 

P,(t) FX(t) with Fx(t) = Pb(t) + X,(t) 

p,(t) FX(t) with Fx(t) = P,(t) + P,(t) 

P,(t) 

PDP (t) 

‘b(t) + ‘B(t) 

+ P,(t) + P,(t) 

FX(+) with Fx(+) = PERMANENT FAULTS 

P,(t) + P,(t) 

TRANSIENT FAULTS 

FX(t) with Fx(t) = Pdp(t) 

* t HERE IS A MEASURE OF THE TIME SINCE THE ENTRY INTO STATE A, 

PROBABILITY OF BEING IN 

STATE B AT TIME t 

PROBABILITY OF BEING IN 

A NON-BENIGN STATE AT 

TIME t 

PROBABILITY OF A LATENT 

FAULT OR UNDETECTED ERROR 

AT TIME t 

PROBABI LITY THAT A FAULT 

HAS BEEN DIAGNOSED AS 

PERMANENT BY TIME t 



Table 2b 

Double-Fault Model Equations 

FUNCTION MATHEMATICAL EXPRESS ION DEFINITION 

ci(t) Bi(t)dj(t)rj(t)aj(t) + TRANSITION RATE FROM 

i = 1,2 

j = 3-i 

(l-PA 
j 

)bi(t) sj(t)rj(t)aj (t) + 

bi(t)dj(t)pj (t)aj(t) 

fiW aj (t)bi(t)di(t)ri(t) 

i = 1,2 

j = 3-i 

c4 (t) 

c3 (t) 

t 
0 

[C,(t-T) B, (T+(T) + 

C2(t-T)Bl(T)b2(T) ]dT 

t 
0 

[fl(t-dB2(dblh) + 
f2 (t-T) Bl(T)b2W IdT 

STATE AjBi TO STATE F 

TRANSITION RATE FROM 

STATE AjBi TO STATE 

y2 

INTENSITY OF ENTRY INTO 

STATE F t TIMEUNITS AFTER 

ENTRY INTO STATE BlB2 

INTENSITY OF RE-ENTRY 

INTO STATE BlB2 t TIME 

UNITS AFTER A PREVIOUS 

ENTRY 

- 



Table 2b (Continued) 

Double-Fault Model Equations 

FUNCTION MATHEMATICAL EXPRESS ION DEFINITION 

P3W 

P&) 

t flW + o c3(t-~)p3(~)d~ 

t c,(t) + 
0 

c4(t-T)p3h)dT 

INTENSITY OF ENTRY INTO 

STATE BlB2 t TIME UNITS 

AFTER ENTRY INTO STATE 

A2Bl 

INTENSITY OF ENTRY INTO 

STATE F t TIME UNITS 

AFTER ENTRY INTO STATE 

A2Bl 



4. Concluding Remarks 

It is, of course, obvious that the more reliable a system 

becomes, the more improbable are the events that cause it to fail. 

Accordingly, reliability models designed to estimate the reliabili- 

ty of such systems must necessarily take into account effects 

which could be ignored or only roughly approximated in models de- 

signed for less reliable structures. These effects are generally 

referred to as coverage effects; that is, effects that result in 

system failure due, not to an exhaustion of resources, but rather 

to faults that, while circumventable, are not detected and isolated 

before they have caused the system as a whole to malfunction. 

CARE III is designed to allow the user to model coverage effects 

to a detail heretofore impossible. To take full advantage of this 

capability, the user must attempt to specify more completely just 

how the effects of a fault make themselves manifest to the system. 

In order to estimate the distribution of the time from the occur- 

rence of a fault to its detection, in particular, consideration 

must be given to the frequency and thoroughness with which the 

faulty module is tested. If the module is tested every r seconds, 

for example, and if the probability is unity that the fault is de- 

tected if it is present when the test is conducted, then the dis- 

tribution of the time to detection is well modeled as d(t) = l-t/-c, 

o< t< T. If, on the other hand, the module is tested at random - - 
intervals with a less than certain outcome even if the fault is 

present, a distribution of the form d(t) = e -8-b might be more ap- 

propriate. Similar considerations are needed to select the other 

relevant functions and parameters used in the CARE III coverage 

model. 

In many cases, coverage model parameters may be difficult to 

determine. Even in these cases, it is felt that CARE III can still 
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play a valuable role for two reasons: 1) It forces the user to 

examine aspects of the system that might otherwise have been ig- 

nored. 2) More importantly, it provides a means for determining 

the sensitivity of the system's reliability to assumptions made 

both about the behavior of faults and about the mechanisms pro- 

vided to recover from them. 

Preliminary tests have shown that CARE III is indeed capable 

of accurately estimating the reliability of a variety of systems 

under a variety of conditions and assumptions (cf. Ref. 3). These 

tests are being continued, both at Raytheon and elsewhere, and 

will be reported on in greater detail later. 
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